

Modeling and Enhancing Android's Permission System

Elli Fragkaki, Lujo Bauer, Limin Jia, and David Swasey

November 30, 2011

(revised April 25, 2012)

CMU-CyLab-11-020

CyLab

Carnegie Mellon University

Pittsburgh, PA 15213

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
25 APR 2012 2. REPORT TYPE

3. DATES COVERED
 00-00-2012 to 00-00-2012

4. TITLE AND SUBTITLE
Modeling and Enhancing Android’s Permission System

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Carnegie Mellon University,CyLab,Pittsburgh,PA,15213

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT
Several works have recently shown that Android’s security architecture cannot prevent many undesired
behaviors that compromise the integrity of applications and the privacy of their data. This paper makes
two main contributions to the body of research on Android security: rst, it develops a formal framework
for analyzing Android-style security mechanisms; and, second, it describes the design and implementation
of Sorbet, an enforcement system that enables developers to use permissions to specify secrecy and
integrity policies. Our formal framework is composed of an abstract model with several speci c
instantiations. The model enables us to formally de ne some desired security properties, which we can
prove hold on Sorbet but not on Android. We implement Sorbet on top of Android 2.3.7, test it on a Nexus
S phone, and demonstrate its usefulness through a case study.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

20

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

Modeling and Enhancing Android’s Permission System

Elli Fragkaki Lujo Bauer Limin Jia David Swasey
Carnegie Mellon University

Abstract

Several works have recently shown that Android’s security architecture cannot prevent many undesired
behaviors that compromise the integrity of applications and the privacy of their data. This paper
makes two main contributions to the body of research on Android security: first, it develops a formal
framework for analyzing Android-style security mechanisms; and, second, it describes the design and
implementation of Sorbet, an enforcement system that enables developers to use permissions to specify
secrecy and integrity policies. Our formal framework is composed of an abstract model with several
specific instantiations. The model enables us to formally define some desired security properties, which
we can prove hold on Sorbet but not on Android. We implement Sorbet on top of Android 2.3.7, test
it on a Nexus S phone, and demonstrate its usefulness through a case study.

1 Introduction

Recent years have witnessed an explosion in the use of mobile computing thanks to the proliferation of
feature-rich smartphones, and associated app stores and easy-to-install applications. Smartphones have
powerful hardware, with many useful sensors (e.g., GPS, camera, microphone, accelerometer) exposed via
rich APIs, and enough computing power to run complex applications. Applications take advantage of these
rich APIs to perform convenient and useful, but potentially privacy-sensitive tasks such as accessing address-
book or location information; accessing online banking and medical accounts; and controlling home security
systems. App stores make it easy for users to install and run applications, while providing few guarantees
about their provenance or behavior.

To protect sensitive resources from applications, and applications from each other, Android and other
mobile OSes implement security mechanisms such as permission systems and strong isolation between ap-
plications. These mechanisms, however, have in practice proved insufficient, with an increasing number of
malicious applications starting to target smartphones [14, 22, 15].

A number of works have investigated these weaknesses from various perspectives, including demonstrating
how applications can communicate through covert channels [23, 17], developing tools to detect information
leaks [8, 5, 13], and implementing more powerful protection mechanisms (e.g., [21, 19, 7, 2]).

This paper adds to the body of research on Android security in two main ways: first, by developing
a formal framework for analyzing Android-style security mechanisms, including defining properties desired
of those, and verifying whether these properties hold; and, second, by designing and implementing an
enforcement system that provides application developers with simple language constructs to specify flexible
secrecy and integrity policies, and provably exhibits desirable security properties. To remain practically
relevant, we constrain our enforcement system, which we call Sorbet, to be easily retrofittable into Android’s
current architecture. The design and implementation of Sorbet improves existing Android permission
system in the following aspects: (1) we formally state the properties that we wish our new mechanisms to
achieve, and formally prove that our system design supports them; (2) we enhance Android’s permission
system to support coarse-grained secrecy and integrity policies; and (3) we provide more flexible support for
fine-grained and scope-limited delegation of permissions.

Formal analysis. One of our main goals is to improve our understanding of the security properties that
we desire of Android-like permission systems, and to verify that specific systems are capable of specifying
and enforcing desired properties. We pursue this goal by building a generalized, abstract model of the
Android permission system, and stating a set of desirable properties in terms of the model. We then develop

1

instantiations of this model both for the current Android permission system and for Sorbet. Based on this
formal account, we study the properties of the current system; our investigation reveals both design and
implementation flaws, which guide the design of Sorbet. We also prove that Sorbet’s design is sufficient
to support the properties that we have defined.

Coarse-grained secrecy and integrity policies. Sorbet’s key innovation is coarse-grained mechanisms that
allow developers to protect their applications against privilege escalation and undesired information flows
(e.g., [6, 8]). Android’s permission system only prevents applications that do not have the correct permissions
from directly calling a protected component. This is inadequate to protect against a malicious application
that reaches a protected component indirectly, via a chain of calls to innocent applications. To protect
against such attacks, we enrich Android’s permission system with the ability to specify information-flow
constraints and explicit declassification permissions, and implement a light-weight calling-context tracking
and checking mechanism. A key challenge here is to support local specification of global properties.

Flexible and fine-grained delegation. Run-time delegation of (URI) permissions is a key feature in Android,
and allows applications to use third-party components (e.g., a viewer activity) to manipulate content that
those components normally would not be permitted to access. On examination, we discovered that Android’s
implementation of permission delegation is plagued by a number of flaws and questionable design decisions.
Sorbet supports more flexible and principled permission delegation and revocation, and allows developers
to specify constraints that limit the lifespan and redelegation scope of the delegated permissions. Developing
a mechanism that correctly enforces lifetime and scope constraints turns out to be unexpectedly tricky,
due to redelegation and the dynamic nature of Android applications and components, including application
installation and uninstallation, and instantiation and termination of components.

Contributions and Roadmap This paper makes the following contributions:

• We develop a formal model that generalizes Android-style permissions (§2.2). We show how Android’s
current permission system can be represented as an instantiation of our abstract model (§2.3).

• Building on this model, we define a set of security properties that one may desire of Android-style per-
mission systems (§3.1). We show that Android currently obeys some of the desired security properties,
but not others, and expose several design inconsistencies and implementation flaws (§3.2).

• We describe Sorbet, a set of improvements to Android’s permission system that supports developer-
specified coarse-grained information-flow and privilege-escalation policies. We formalize Sorbet as an
instantiation of our model and show that it better supports the desired security properties (§4).

• Finally, we implement Sorbet on top of Android 2.3.7, test it on a Nexus S phone, and demonstrate
several new scenarios that it enables (§5).

2 Preliminaries

We first review the Android architecture as it pertains to permissions (§2.1). We then develop an abstract
model of Android-style permission systems (§2.2), and an instantiation of it that captures details of Android’s
implementation (§2.3).

2.1 Android Overview

Android is a Linux-based open-source OS designed for smartphones. Android applications are written in
Java and compiled to Dalvik bytecode. Each application is executed in a separate Dalvik Virtual Machine
(DVM) instance.

Android applications are composed of four types of components:

Activities define the user interface. Only one activity interacts with the user at a time. Users typically
interact with a sequence of activities to perform a task.

2

Services run in the background and have no user interface. Unlike activities, services remain active regardless
of which application is in the foreground.

Broadcast receivers listen for system-wide broadcasts, and inform other application components upon the
receipt of a broadcast.

Content providers store data and are the main way to share data between applications. Each provider exposes
a public URI that uniquely identifies its data set. Components and applications can access or update the
data via SQL queries.

Activities, services, and broadcast receivers communicate via intents, asynchronous messages that deliver
data and, if needed, cause a new instance of the recipient component to be created. The OS mediates both
cross- and intra-application communications via intents. The recipient of an intent can be specified explicitly
by its package and class name, or implicitly via the action the intent attempts to initiate. We will often write
that a component calls another component in lieu of explaining that the communication is via an intent.

Android uses (application) permissions to protect components and sensitive APIs. Permissions are strings
defined by the system (e.g., android.permission.INTERNET) or declared by applications. A component (or API)
protected by a permission can be accessed only by applications that hold this permission. An application
can acquire (application) permissions only at install time, with the user’s consent.

Additionally, content providers can use URI permissions to grant ad-hoc access to specific pieces of data
that they control (records, tables, or databases). URI permissions can be dynamically granted and revoked.

2.2 Abstract Model

To be able to formally state the properties desired of a permissions architecture, we develop an abstract,
formal model of Android-style permissions systems. The model comprises: (1) static elements, which are the
code and data we want to protect; (2) run-time elements, such as system events and component instances;
and (3) a transition system that captures the behavior of the protection mechanisms. The model is more
general than Android’s implementation as its purpose is to encompass a wider design space of permission
systems, including previously suggested extensions (e.g., [21]). Fig. 1 shows the model’s static and run-time
elements.

Static constructs Following Android, applications in our model are built from components. We dis-
tinguish between code components (Ccode) and data components (Cdata). Code components—activities,
services, and broadcast receivers—may act both as callers and as callees, while data components—content
providers—are passive and only receive calls. A code component is comprised of a name (name), the actions
A to which the component is willing to respond, permissions (Pdecl , Preq , and Pgrnt), and guards (ϕckCallee,
ϕckCaller).

In Android, calls to a component are guarded by a permission check. We generalize this check to an
abstract guard modeled by a boolean function ϕckCaller . For now, we specify only that ϕckCaller takes as
arguments a component and the calling context and returns true or false. A second general guard, ϕckCallee,
specifies when outgoing calls should be allowed.

We distinguish between permissions that are declared (Pdecl), requested from the user (Preq), and granted
(Pgrnt). This allows us to model behaviors such as dynamic delegation of permissions.

We model applications, Ĉ , as a set of components ({C1, · · · ,Cn}) with guards and permissions that apply
to all. This is consistent with Android, where permissions are typically declared, requested, and granted at
the application level, but individual components can protect themselves with additional permissions.

Run-time constructs It is important to distinguish static components from run-time instances, and run-
time instances from each other. A static component C may have multiple run-time instances iC , composed
of a unique identifier (e.g., pointer), namer , and the permissions Pgrnt granted to this instance. We similarly

model run-time component groups iĈ (e.g., a running application).
Principals Prin are entities that can grant and revoke permissions: run-time components and component

groups, and the user (i.e., human who installs applications). Targets Tgt are the objects of such operations,
and can be either run-time or static components or component groups.

3

Static Constructs
Components C ::= Ccode | Cdata

Code Components Ccode ::= (name,A, ϕckCallee, ϕckCaller ,Pdecl ,Preq ,Pgrnt)
Data Components Cdata ::= (name, ϕckCaller ,Pdecl)

Component Groups Ĉ ::= (name, ϕckCallee, ϕckCaller ,Pdecl ,Preq ,Pgrnt, {C1, · · · ,Cn})

Run-time Constructs

Run-time Instances Ins ::= iC | iĈ
Comp Instances iC ::= (namer ,C ,Pgrnt)

Comp Group Instances iĈ ::= (namer ,Ĉ ,Pgrnt, {iC1, · · · , iCn})
Principals Prin ::= Ins | user
Targets Tgt ::= Ins | C | Ĉ
Events E ::= x = E1; E2 | call iC1 iC2 I | return iC1 iC2 I | resolve iC ϕ

| grant Prin Tgt P F | revoke Prin ({Tgt1, · · · ,Tgtn}) P

| checkguard iC Tgt ϕ | exit Ins | install Prin Ĉ | uninstall Prin Ĉ

Figure 1: Syntax of permission model

Abstracting detail, we focus on system events that concern permissions, such as component communica-
tion via intents (call iC1 iC2 I), and granting (grant) and revoking permissions (revoke).

We allow the sequencing of two events using x = E1; E2. The event E1 is executed first, and produces
a result, which substitutes x in E2.

The event call iC1 iC2 I models a component iC1 attempting to call iC2 with intent I. When iC2 is a
code component, this models the last step of starting an activity, service, or broadcast receiver. When iC2

is a data component, this models querying or updating the data component. Similarly, iC2 can be a Java or
Android API method protected by a permission. We model a return from a call as return iC1 iC2 I, where
I is the intent that conveys the value returned by iC2 to iC1.

The resolve iC ϕ event returns a run-time component that satisfies the specification ϕ. For instance, the
following macro models the sequence of events generated by iC starting an activity by specifying an action
A: (x = resolve iC ϕA; call iC x I). The guard ϕA, defined in §2.3, returns true if the set of accepted actions
declared by x includes A.

Event exit Prin signals the termination of a run-time component or group.
Events grant and revoke model granting and revocation of permissions. A permission P is granted or

revoked by a principal Prin to or from a target Tgt or set of targets. Granting is additionally described by a
flag F , which constrains the lifespan and redelegation scope of the delegated permissions. We discuss these
constraints further in §2.3 and §4.1 when we focus on the Android instantiation of the abstract model and
our enhancements.

A component can also check whether another component (group) satisfies a specific guard ϕ using
checkguard iC Tgt ϕ. This is a generalization of the permission-checking operation in Android.

Finally, we model the installation and uninstallation of an application via the install and uninstall events.

Transition system We capture the dynamics of the model as a transition system. We model a system
state Σ as a tuple composed of a set of entities (run-time and static) and auxiliary data structures Aux .
We write E to denote a sequence of events to be processed by the system. We assume that each event is
associated with a unique event ID n. The evolution of the system is a series of transitions (Σ; E o−→ Σ′; E ′),
where o records whether the evaluation of event n is successful (o = ok(n)) or fails (o = fail(n)). Evaluation
of a call event will fail, for example, if the appropriate guards do not evaluate to true. A trace, denoted by
T , is a sequence of transitions: Σ0; E0

o1−→ Σ1; E1 · · ·
ok−→ Σk; Ek.

Most of the specific rules in the transition system depend on the concrete implementations being modeled.
Here we show the rules for resolving an instance and calling a component, which are the same for both of
the instantiations we model, except for detailed operations on the auxiliary data structures.

The resolve event updates the state to Σ′, and returns a run-time instance iC2 that satisfies the guard ϕ

4

under the updated state Σ′.

resolve-t (Σ; E , n :: (x = resolve iC1 ϕ;E))
ok(n)−→ (Σ′; E , n′ :: E [iC2/x])

where ϕ(Σ′, iC2) = true and Σ′ = updateResolve(Σ, resolve iC1 ϕ)

For brevity, we abstract away the details of the function updateResolve(Σ, resolve iC1 ϕ). This update
will include, if needed, creating the run-time instance iC2. A similar rule describes the scenario when resolve
fails and the output of the transition is fail(n).

Below is the rule schema for a successful call event. The call succeeds only if both guards evaluate to
true.

call-t (Σ; E , n :: call iC1 iC2 I)
ok(n)−→ (Σ′; E) where Σ′ = updateCall(Σ, call iC1 iC2 I)

if iC2.ϕckCaller (Σ, iC1) = true and iC1.ϕckCallee(Σ, iC2) = true

A parallel rule, call-f, specifies that a call fails if either guard returns false.

call-f (Σ; E , n :: call iC1 iC2 I)
fail(n)−→ (Σ; E)

if iC2.ϕckCaller (Σ, iC1) = false or iC1.ϕckCallee(Σ, iC2) = false

A call event fails (rule call-f) if one of the guards specified by the caller and the callee fails (evaluates
to false).

2.3 Android Model

We instantiate our abstract model to describe the key behaviors of Android’s permission system1. This has
helped us to identify flaws in its implementation and peculiarities in its design. We discuss in detail the
guards used for checking permissions, the transition rules for granting and revoking permissions, and how
events such as application exit and phone reboot affect permissions.

Guards The Android permission system uses four guards, which we label ϕtrue , ϕA, ϕP and ϕuri
P .

The guard ϕtrue always returns true, and is used when access is unrestricted, e.g., as ϕckCallee for
components that do not broadcast messages (and hence need not restrict their recipients).

The guard ϕA is used by resolve when a call is described by an action (e.g., ACTION CALL), rather than
being sent to a specific component. ϕA(iC ,Σ) returns true if iC accepts action A.

The guard ϕP checks whether a component is granted at install time all permissions in P. ϕP can be
used as ϕckCaller when P is the set of permissions protecting a component, or as ϕckCallee by components
that want to make sure that their sensitive broadcasts are not broadcast too widely. To define ϕP , we first
define functions to look up the permissions associated with a run-time component from the current state.
Function grantedByUsrPerm(iC ,Σ) returns permissions granted at install time. Then, we can define ϕP as
follows.

ϕP , f(iC ,Σ) = P ⊆ grantedByUsrPerm(iC ,Σ)

The guard ϕuri
P checks whether a component has the URI permissions specified in P. ϕuri

P can be used
as ϕckCaller when P is the set of URI permissions protecting a component.

We define function URIPerm(iC ,Σ) returns the URI permissions dynamically granted to iC ; URIPerm
in turn relies on a data structure M to track the URI permissions granted to each application. Then, we
define ϕuri

P as follows.

ϕuri
P , f(iC ,Σ) = P ⊆ grantedByUsrPerm(iC ,Σ) ∪URIPerm(iC ,Σ)

Granting permissions URI permissions can be granted temporarily, via an intent, or permanently, via
grantUriPermission. We model the former as:

grant iC1 iC2 P Ftmp ; call iC1 iC2 I.

1When we refer to Android, we mean version 2.3.7, which was the newest version available while we were carrying out our
investigation. The behaviors we describe generally hold in 4.0 as well.

5

Here, iC1 grants permission P with flag Ftmp to iC2 before transferring control to iC2. Granting permanently

we model as grant iC1 Ĉ P Fprm . Flags Ftmp and Fprm constrain the lifetime of the delegation of P and
the scope of its potential redelegation by iC2. Mirroring Android, the lifetime of permissions granted with
Ftmp is confined to the lifetime of the recipient (iC2) of the grant operation. When granting with Fprm ,
the recipient will have the permission until the system reboots or the permission is revoked. Neither flag
restricts the scope of redelegation. The following rule shows how grant currently works in Android.

grant-tmp-t (Σ; E , n :: grant iC1 iC2 P Ftmp)
ok(n)−→ (Σ′; E) if ϕuri

{P}(iC1,Σ) = true

where Σ′ = updateGrant(Σ, iC1, iC2, P,Ftmp)

Granting succeeds only if the granter has permission P . Afterwards, updateGrant updates state, by recording
in M that the enclosing application of iC2 now has permission P with flag Ftmp , and that the instance iC2

has P in Pgrnt.

The rule for granting with Fprm (omitted here) differs only in its update function: M records that now Ĉ
has permission P with the flag Fprm . These rules make explicit that Android does not distinguish between
Ftmp and Fprm when deciding whether a component can grant permissions. This causes problems when
components redelegate permissions, as we discuss in §3.2.

Revoking permissions Revocation in Android is coarse-grained: permissions can be revoked by their
owner and by any applications that are granted the permissions at install time, and revocation indiscrimi-
nately removes the permission from all entities which had it. There is no way of revoking permission from
just a specific application or component. We write ∗ to denote all run-time instances.

revoke (Σ; E , n :: revoke iC1 ∗ P)
ok(n)−→ (Σ′; E)

if ϕP(iC1,Σ) = true where Σ′ = updateRevoke(Σ, ∗, P)

The function updateRevoke(Σ, ∗, P) removes all entries related to P from M, and removes P from the
granted permission set of all run-time components.

Exit and Reboot When a component exits, the URI permissions that it was granted are removed.

exit (Σ; E , n :: exit iC)
ok(n)−→ (Σ′, E) where Σ′ = updateExit(Σ, iC)

updateExit performs two tasks: it removes the run-time instance from the state; and removes from M the
mapping from the name of the enclosing application of iC to a permission and flag pair (P,Ftmp) for all
permissions P that were granted to iC . Note that it does not remove permissions associated with the
permanent flag Fprm .

When the system reboots, all the run-time components are deleted, and the auxiliary data structure is
reset to be an empty map.

reboot ((M,Ĉ 1, · · · ,Ĉn, iĈ 1, · · · , iĈn); E , n :: reboot)
ok(n)−→ ((∅,Ĉ 1, · · · ,Ĉn); ∅)

3 Security Properties

We define several properties that one might desire of an Android-style security architecture (§3.1) and
investigate whether they currently hold (§3.2).

3.1 Specifying Desired Security Properties

We formulate the properties desired of Android’s security architecture based on the resources that need
protection. These are typically interfaces that allow access to functionality that could cause harm or incon-
venience (e.g., sending expensive text messages) and to sensitive data that should not leave the possession of
components that legitimately require it (e.g., financial information in a banking application; location infor-
mation). We abstractly define access-control properties that specify when and how a protected interface can
be called and information-flow properties that specify when and what information can flow to or from a com-
ponent. We also investigate lower-level, functional-correctness properties concerning granting and revoking
permissions, since these directly affect the access-control and information-flow properties.

6

Local properties The following two properties state that the immediate restrictions specified by a com-
ponent on its callers or callees are always obeyed.

Property 1. (Local callee protection) If a component A is called by another component B, then A’s guard
ϕckCallee evaluates to true.

Property 2. (Local caller protection) If a component A calls another component B, then A’s guard
ϕckCaller evaluates to true.

It is easy to show that Prop. 1 and 2 hold on any instantiation that includes rules like call-t and call-f

(see §2.2).

Delegation and revocation properties Property 3. (Delegation) A component A has a permission
P if A owns P , or there is a delegation chain from a component B to A such that A satisfies the scope and
lifetime constraints imposed by every component on the chain, and that every component on the chain also
has P .

1. A owns P or A is granted P by the user; or
2. (a) there exists a delegation chain that ends with A s.t. for all B in the chain (where B 6= A):

i. B has P , and
ii. A satisfies the scope and lifetime constraints imposed by B;

(b) and P has not been revoked from A.

Intuitively, Prop. 3 ensures that the use of a redelegated permission is confined by the lifetime and
scope constraints specified by the original granter. For instance, if an email component gives to a viewer
component the URI permission P for displaying an attachment, two sensible constraints are that P is confined
to a specific instance of the viewer, and that the viewer cannot redelegate P .

Property 4. (Revocation) If A revokes P from B, then there is a delegation chain from A to B, or A
owns P .

This is a basic correctness property for revocation. Allowing arbitrary components to revoke permissions
is likely to be disruptive; hence, only the owner or granter should be allowed to revoke a permission.

Global properties The next two properties are simplified noninterference. We customize the general
notion that secret inputs cannot affect public outputs and tainted inputs cannot affect endorsed outputs to
fit the permission-based Android model.

Property 5. (Privilege escalation) Given any component B protected by permission P , and any component
A that does not have that permission, if SAB is a system that contains A and B (and other components),
and SB is the same system without A, then a call chain ending with B exists in SAB if and only if it exists
in SB. Additional call chains ending with B may exist in SAB if explicitly allowed by policy.

In other words, with respect to accessing B, a system with unprivileged component A should behave the
same as a system without A. The only exception is if additional policy explicitly allows A to affect B.
Without such exceptions, this property would likely be too restrictive.

For example, let B be the interface, guarded by permission P , for rebooting the phone. Suppose that
component C has P (which allows it to call B), and a public interface, such that any calls to that interface
will cause C to call B. Then, a component A that does not have P can indirectly cause B to be invoked by
calling C. C’s indiscriminate invocation of B is an example of the confused-deputy problem. Since a trace
culminating in that invocation of B cannot exist in a system without A, Prop. 5 prohibits this behavior.

In the other direction, we may want to prevent sensitive information from being leaked, which permission
systems typically cannot specify directly. We leverage permissions to state an undesired information flow as
follows. Suppose that permission P1 guards the source of some information and permission P2 guards the
sink. Then, an undesired information flow can be specified as a call chain from a component that uses P1 to
a component that uses P2. A system that has no undesired information flows should then obey the following
property.

7

Property 6. (Information flow) Given an undesired information flow from a component A guarded by P1

to a component B guarded by P2, a call chain that ends with B exists in a system with A if and only if the
same call chain exists in a system without A. Additional call chains ending with B may exist in the system
with A only if explicitly allowed by policy.

Without a more expressive policy specification language, these properties cannot be specified precisely.

3.2 Analyzing Android Permissions

We investigated the extent to which Android’s current permission system, as represented by our model,
supports the properties defined in §3.1.

Local properties hold Android’s permission system implements the call-t and call-f rules, and the
guards specified by the components are checked at run time; hence, Prop. 1 and 2 hold. However, Prop. 2
holds trivially, because callers cannot state useful guards on callees.

Delegation and revocation properties do not hold Prop. 3 requires that a permission does not outlive
the lifespan specified by its granter. Android’s implementation, however, does not distinguish between Ftmp

and Fprm when deciding whether a component can grant permissions. This violates Prop. 3 and causes
several bugs (see Appendix A), e.g., a component that gained temporary permission can redelegate the
permission permanently, including to itself.

Android’s revokeURIPermission revokes a URI permission from all components to which it was dynamically
granted, and can be called by any component that was granted the permission at install time. This violates
Prop. 4, which requires that a component A can revoke only from entities to which it granted permission
(unless A owns the permission). Such violations can easily cause confusion, as unrelated applications can
revoke each other’s permissions.

Global properties do not hold Previous work has pointed out that Android suffers from privilege-
escalation flaws (e.g., [6]); i.e., Prop. 5 does not hold. Prop. 6 also does not hold, as Android does not
have a mechanism for preventing, or even specifying, undesired information flows. An application can access
any component for which it has the permission to do so, regardless of whether it had previously accessed
protected information. Previous work has shown that this results in various specific undesired information
flows [23, 17, 8].

Examining Android in light of these properties also revealed several implementation bugs (see Appendix A),
which we reported to Google.

4 Sorbet: Android Permissions++

Motivated by the properties of §3.1, we develop Sorbet, an improved permission system that supports (1)
developer-defined policies to mitigate undesired information flows and privilege-escalation attacks; and (2)
well-behaved permission delegation and revocation. Our goals were to enable developers and users to specify
richer policies on their applications without dramatically altering Android, and to construct an enforcement
system that is provably well behaved.

Some of the mechanisms we use have been discussed previously [10, 21, 13, 7]; we integrate these and
other ideas into a system that we can formally show satisfies interesting security properties and enables new
use cases.

4.1 New Features in Sorbet

Coarse-grained information-flow protection Sorbet extends Android’s permission labels to make
them suitable for specifying coarse-grained information-flow policies, and enforces such policies at component
and application boundaries. By reusing permission labels, this approach requires little new syntax.

8

Flag Recipient Redelegation scope Lifetime

Fcomp activity no redelegation activity exit

Ftask activity activities in the same task activity exit

FappTmp activity activities in the same app activity exit

FallTmp activity any component activity exit

Fapp app no redelegation app uninstall

Fall app unrestricted app uninstall

Figure 2: Flags for constraining delegation. Columns show the recipient scope, the scoping constraints of
redelegation, and the lifetime of the granted permission.

In Sorbet, a component A guarded by P1 (e.g., the contacts permission) can specify (in the application
manifest) information-flow policies of the form disallow-flow(P1, P2). This indicates that any component
B that made use of P1 to access A cannot (including transitively) use permission P2. A component can
also request at install time the permission allow-declassify(P1, P2) to declassify sensitive information, i.e., to
escape the restriction imposed by disallow-flow(P1, P2). We formalize this mechanism and the property it
enforces in §4.2 and §4.3.

Our mechanism can be used by programmers to strengthen their own code by separating trusted infor-
mation that should remain internal to an application from untrusted flows that may be communicated to the
outside, thereby decreasing the chance of the application being misused by malicious ones. The mechanism
can also be used to defend against malicious applications or developers, by specifying policies that should
hold between applications.

Coarse-grained privilege-escalation protection To mitigate the confused-deputy problem, Sorbet
tracks the permissions of all components on the call stack. When a component A is called, and A is protected
by permission P , Sorbet checks if every component on the call stack has P . However, this is too restrictive
for practical use; e.g., an email app, which needs to use the INTERNET permission to send email, could
do so only when started by applications that have the INTERNET permission. To address this, Sorbet
allows components to request a privileged permission P̂ . When a component B has the permission P̂ , it is
permitted to call A even when other components on its call stack do not have P . P̂ is similar to the enable
privilege operation in Java stack inspection. Other works have also tracked the call stack for similar purposes
(e.g., [7]); Sorbet’s novelty here is in allowing developers to specify policies, and in enabling proofs that
this and other design features allow the system to exhibit desired properties.

As with information flow, Sorbet protects against privilege escalation at both component level and
application level. To account for Android’s inability to completely mediate communication (e.g., via public
static fields) between components within an application, the policy enforced at the application level assumes
that component boundaries within an application are not respected.

Principled redelegation and revocation Sorbet also addresses Android’s problems with indiscrimi-
nate redelegation. The challenge here is to design a (correct) mechanism to allow programmers to predictably
control delegation lifetime and redelegation scope. Building on Android’s notion of temporary and persistent
permissions, we enable the grant operation to precisely convey the intended scope of the recipient (a com-
ponent or an application), the scope of redelegation (none, components in the same task, components in the
same application, and unrestricted), and the lifetime of the permission (until the recipient activity exits, or
is uninstalled). For simplicity, we converge on six combinations of these constraints (summarized in Fig. 2),
which the programmer can specify via flags passed as arguments to grant. The enforcement mechanism
enforces the transitive properties that the constraints implicitly require.

Sorbet allows a component A to revoke a permission P from component B only if A granted P to B
(or A owns P). In other words, the act of delegating creates a new link in a delegation chain, and revocation
removes that link.

4.2 Implementation of Improvements in Abstract Model

We now describe Sorbet as an instantiation of the abstract model.

9

Information-flow protection To enforce information-flow policies specified by disallow-flow(P1, P2) and
allow-declassify(P1, P2), we augment the model with an auxiliary data structure N , which keeps track of
information-flow constraints. More concretely, N maps a component instance iC to the set of information-
flow constraints that includes all such policies specified by components in the call chain before and including
iC .

We define forbidP(N , iC) to return the set of permissions that are forbidden from being used by con-
straints in N (iC). For instance, if N (iC) = {disallow-flow(P1, P2)}, then forbidP returns {P2}. Function
guardP(Σ, iC) returns the set of permissions that guards the calls to component iC . A successful call between
components in the same group can now be defined as follows.

call-t (Σ; E , n :: call iC1 iC2 I)
ok(n)−→ (updateCall(Σ, call iC1 iC2 I); E)

if iC2.ϕckCaller (Σ, iC1) = true and iC1.ϕckCallee(Σ, iC2) = true
and guardP(Σ, iC2) ∩ forbidP(N , iC1) = ∅

The last line is the added check for information-flow policies. The call succeeds only if the permission
required to access the callee is not forbidden by the policy.

If the call succeeds, information will flow from the caller to the callee, and constraints need to be similarly
propagated. In addition, the callee has its own constraints that need to be incorporated in N . For this,
we define two new functions. updFlow(N , iC ,Fl) returns a new mapping N ′, where N ′(iC) = N (iC) ∪ Fl .
updDeclassify(N , iC , allow-declassify(P1, P2)) returns a new mapping N ′, which removes disallow-flow(P1, P2)
from N for iC . Hence, after a declassification permission allow-declassify(P1, P2) is encountered, the con-
straint that forbade access to components guarded by P2 is lifted. E.g., if the user explicitly allows access
to the Internet after private data is read, then this will be allowed.

We define function flowP(Σ, iC) to return the set of information-flow constraints that guard the calls to
iC , and getDeclassify(iC) to return the set of declassification permissions of iC . The function updateCall
first computes N ′ = updFlow(N , iC2, flowP(Σ, iC1)), then N ′′ = updFlow(N ′, iC2,N (iC1)), and finally
N ′′′ = updDeclassify(N ′′, iC2, getDeclassify(iC2)).

Since Android cannot mediate all communication between components within the same application, a
cross-application call needs to conservatively assume that components within an application have communi-
cated. Hence, we treat such calls differently. We write NA(iC) to be the union of sets of information-flow
constraints N (iC ′), for each iC ′ that is in the same application as iC . We define forbidPA(N , iC) = NA(iC).
We define function guardPA(Σ, iC) to return the set of permissions that guards the calls to all components
in the same application as component iC . In the rule for cross-application calls, NA takes the place of N ,
and guardPA takes the place of guardP. This means that if any component in an application has accessed
private data protected by disallow-flow(P1, P2), then no component in that application can use permission
P2. The update function similarly accumulates all constraints in the entire application, rather than just one
component.

Returns are treated similarly to calls, with the caller and callee designations switched.

Privilege-escalation protection To prevent privilege escalation, we use auxiliary tree-like data struc-
tures to keep track of the full call history. We define a call forest TS as a list of call trees T , as follows:

Call Forest TS ::= [T1, · · · , Tn] Call Tree T ::= (TS , (iC ,P))

We use MT S to denote a mapping from run-time components to call forests. Each call tree represents a
call chain, and the root of the tree is the last component on the call chain. The child of the root is a call
forest, which is a list of call chains, each representing a past call chain to the root component. If component
A (which has permissions PA) calls B (with permissions PB), and C (with permissions PC) also calls B,
and B has only one run-time instance, then MT S(B) = [([], (A,PA)), ([], (C,PC))]. In other words, each
call tree in the call forest MT S(B) records the full context of the call stack. If B now calls D, the call tree
([([], (A,PA)), ([], (C,PC))], (B,PB)) will be stored in MT S(D).

A call from component A to component B is allowed only when for any permission P that guards the
access to B, either A has P̂ ; or A has P and for every call chain recorded in MT S(A), either (1) all
the components have permission P ; or (2) there exists a component C that has permission P̂ , and all the
components in the call stack after C have P .

10

Given the definitions of T and TS , we define functions checkPF (TS , P) and checkP(T , P) recursively.
checkPF (TS , P) returns true if for each individual call stack in TS , it is the case that either (1) all the
components have permission P , or (2) there exists a component C that has permission P̂ , and all the
components in the call stack after C have P . Similarly, checkP(T , P) returns true if the above condition
holds for the call tree T . We show the definitions below.

checkPF ([], P) = true

checkPF (TS , P) = true checkP(T , P) = true

checkPF (TS@[T], P) = true

P ∈ PC and checkPF (TS , P) = true or P̂ ∈ PC

checkP((TS , (iC , PC)), P) = true

We define a function PermOf (iC ,Σ) to return the set of permissions of a run-time component iC in state
Σ. We defineMT (iC ,Σ) to return the call tree rooted at iC . MT (iC ,Σ) = (MT S(iC), (iC ,PermOf (iC ,Σ)).
We define the rule for a successful call below.

call-t (Σ; E , n :: call iC1 iC2 I)
ok(n)−→ (updateCall(Σ, call iC1 iC2 I); E)

if iC2.ϕckCaller (Σ, iC1) = true, iC1.ϕckCallee(Σ, iC2) = true,
and ∀P ∈ guardP(Σ, iC2), checkP(MT (iC1,Σ), P) = true

The last line contains the additional checks for potential privilege escalation. The call will succeed only if
all the components on the call stack have the permission P required to access the callee. We assume that
checking whether C1 has the permissions that C2 requires is specified in ϕckCaller .

If a call is successful, we need to update the call forest mappingMT S of the callee. We define a function
updCallF(MT S , iC1, iC2) to update the call forest map when iC1 calls or returns to iC2. It will return a
new map MT ′

S derived from MT S except that MT ′
S(iC2) =MT S(iC2)@[(MT (iC1,Σ))], where @ is the

list-concatenation operation.
The updateCall function will call the updCallF function. As before, a return is treated as a call in the

opposite direction. We omit the definitions here.
For cross-application calls, as with information-flow protection, we need to consider the call history

of all components in the callee’s application. We define MT SA to return the concatenation of all the
call trees MT (iC ′), where iC ′ and iC belong to the same application. We define MT A(iC ,Σ) to re-
turn the call tree rooted at iC and the call forest contains the call forest MT A(iC ,Σ): MT A(iC ,Σ) =
(MT SA(iC)@MT S(iC), (iC ,PermOf (iC ,Σ)). In the cross-application call, MT is replaced with MT A.

4.3 Properties

We prove Sorbet obeys Prop. 1–6. Here we show only the more concrete restatements of Prop. 5 and 6
made possible by Sorbet’s new policy statements (disallow-flow, allow-declassify, and P̂), and proof sketches
of Prop. 6 and Prop. 5.

We first define an indirect call chain.

Definition 1. (Indirect call chain) Given components A and B, there exists an indirect call chain from A
to B if there exist

1. components D1, · · · , Dk; and
2. call chains from A to D1, from D1 to D2, · · · , and from Dk to B.

We say that a component A can influence another component B if there is an indirect call chain from A
to B. For example, A can affect the behavior of B (i.e., the intents that B sends) if either (1) A is part of a
call chain to B, or (2) A appears in a call chain to some component D, and this chain shares a component
with a different call chain to B. The shared component carries A’s influence to B.

Property 5*. (Privilege escalation (2)) Given a component B protected by permission P , and a component
A that does not have P and belongs to a different application than B, if SAB is a system that contains A
and B (and other components), and SB is the same system without A, then a (possibly indirect) call chain
that ends in B exists in SAB if and only if it exists in SB. Additional (possibly indirect) call chains may

11

exist in SAB only if each such chain has a common suffix with a (possibly indirect) call chain from A to B,
and there exists a component between A and B that has permission P̂ ; or there is a component B′ between
A and B, the path between B and B′ contains components of the same application, and B′ is not protected
by permission P but communicated to B via unmonitored channels.

Property 6*. (Information flow (2)) Suppose a component A is guarded by permission P1 and an information-
flow policy disallow-flow(P1, P2), and a component B is guarded by P2, and A and B belong to different
applications. Then, a (possibly indirect) call chain that ends with B, in a system with A, exists if and only
if the same call chain exists in a system without A. Additional (possibly indirect) call chains may exist in
the system with A only if each such chain has a common suffix with a (possibly indirect) call chain from A
to B, and there exists a component between A and B that has permission allow-declassify(P1, P2).

We formally define a call graph G to capture all the call history as the system executes. Each node in
the graph is a pair of a component’s run-time instance iC , and relevant data structures ∆ at the time the
node is created. The edges of the graph capture all three kinds of information sharing: direct call via intent,
instance sharing; and unmonitored communication between components from the same application.

Proof sketch of Prop. 5 We instantiate ∆ in each node (C,∆) of G as the tuple (R,H, TS), where R is
the set of permissions that C requires the caller to have, H is the set of permissions that C has, and TS is a
call forest such that TS =MT S(C) at the time of the call.

Given an indirect call chain t in SAB that ends in B, we construct the call graph GB , which is the subgraph
of G such that there is a path from every node to a node vB = (B,∆). By definition, all components that
could have influenced the call to B are included in this graph. If GB does not contain A then the call graph
is also a valid call graph in system SB , and Prop. 5 holds. Otherwise, let pAB be the path from vA to vB ,
where vA = (A,∆A). It must be the case that pAB overlaps with t, since vB is a shared node.

Let pB be the longest suffix of pAB such that all the nodes in pB belong to the same application.
We first show that the call forest (TS) in the first node in pB contains a path p′AB that contains node vA,

and all the nodes in pAB that have at least one direct neighbor in pAB that belongs to a different application.
By the definition of cross-application communication, all the edges in p′AB are mediated by the activity
manager. Such a path p′AB exists because the rule for cross-application communication takes all the call
forests of the components from the caller’s application as the caller component’s call forest, which in effect
assumes that there is a direct call edge from every component in that application to the caller component.

Next we show by induction on the length of pB that either there is a component between vA and vB
that contains P̂ , or there exists a B′ such that the edge between B′ and B is unmonitored, and B′ is not
protected by P .

In the base case, when |pB | = 1, B is the only node in pB . By the reasoning above, we know that there
exists p′AB in the call forest of B such that A is the first node. By the definitions of rules call-t, call-f,
ret-t and ret-f, if the call to B succeeded, then it must be the case that checkPF (TS , P) returned true,
where TS was the call forest at node vB . This means that there is a component C on the path p′AB that has

P̂ ; otherwise the check would have failed. Hence, Prop. 5 holds.
In the inductive case, |pB | = n. There are two subcases. In the first subcases, pB does not contain any

unmonitored edges. In this case, the call forest stored at B would have included p′AB . Using similar reasoning

as above, there is a component C on the path p′AB that has P̂ ; otherwise the check would have failed.
In the second subcase, let B′ be the closest node to B on pB such that the edge between B′ and B is

unmonitored. If B′ is not protected by P , then conclusion holds. Otherwise, the length of the prefix of pB
ending with B′ is smaller than n, and we can apply induction hypothesis directly.

Therefore, Prop. 5 holds.

Proof sketch of Prop. 6 Here the data structure ∆ at each node stores forbidden permissions at the time
the node is created. Given the call graph G, we can identify the subgraph GB containing all the (indirect)
call chains that reach B. If GB does not contain A, then this subgraph is also valid in the system without A.
Hence, the conclusion holds. If GB contains A, there must be a path from A to B. In this case, we prove two
statements inductively: (1) If there is an indirect call chain from A to X, X’s enclosing application is XA,
and some of the components in XA use P2, then P2 cannot be in the forbidden permission set of any of the
components in XA on this path, and there must be a component that has allow-declassify(P1, P2) between A

12

App1	 App2	 Resolver	

Ac.vity	
Manager	

Sorbet	
Reference	
Monitor	

Package	 Manager	

Java	 API	

Kernel	

Instance	
Data	

App1	 App2	

Sorbet	 Sta.c	
Data	

Android	 Perms	

Figure 3: Sorbet architecture: Sorbet’s additions to Android are shaded; arrows indicate interactions
between components; and dashed arrows are present in Android but unneeded in Sorbet.

and X (not including X); (2) If there is an indirect call chain from A to X, X’s enclosing application is XA,
and P2 is not in the forbidden permissions of any of the components in XA; then there must be a component
between A and X (inclusive) that has allow-declassify(P1, P2). When proving these two statements, we apply
mutual induction on the length of the trace. The main idea is that the unmonitored communication will
not change the invariant of the conditions, since we make a uniform assumption about components in the
same application. In proving (1), the rule for cross-application calls ensures that the intersection of the sets
of permissions guarding components of the callee’s application and the set of forbidden permissions of the
caller’s application is empty. This condition allows us to apply the I.H. of (2) right away.

5 Implementing and Evaluating Sorbet

We implemented Sorbet on top of Android 2.3.7. This section describes the most salient implementation
details, including the syntactic additions for expressing Sorbet’s policies, and a case study that illustrates
Sorbet’s features.

Syntactic additions We extended Android’s manifest file syntax to support information-flow and in-
tegrity policies. disallow-flow(P1, P2) is specified at the component that is protected by P1 by includ-
ing android:forbiddenPermissions=["P2"] in the list of permissions by which a component is protected.
allow-declassify(P1, P2) is specified as <declassified-info source=["P1"] destination=["P2"]/>. A permis-
sion is labeled as privileged P̂ by the addition of a “privileged” attribute to its declaration: <uses-permission

android:name="P " android:privileged="true"/>.

Implementation overview Sorbet’s keystone is a reference monitor built on top of Android’s Activ-
ityManager (Fig. 3). ActivityManager already mediates inter-component communication, which includes
preventing calls that are illegal by Android’s policy; Sorbet modifies it so that mediation of relevant calls is
handled by Sorbet instead of by the legacy parts of ActivityManager. Enforcing Sorbet’s policies also re-
quires additional bookkeeping, including of instance data (e.g., to recognize that a particular application has
accessed a resource protected by a “forbidden” permission), and richer static policy specified in application
manifests. Hence, a significant component of Sorbet’s implementation is the data structures that imple-
ment this bookkeeping. The bookkeeping includes keeping track of individual files accessed by applications;
for enforcement purposes, these are treated as components.

13

Scenario
Private File
Manager

Editor
Encryption
App

Email App PE IF

1 Private files cannot
be sent over the
network

a
protected by

R/W perms
– – – – –

b
protected by

R/W perms
use Internet use Internet use Internet X –

c
protected by

R/W perms
forbid Internet

use Internet use Internet use Internet – X

2 Private files sent
over network only
via email

a
protected by

R/W perms
use Internet use Internet use ̂Internet X –

b
protected by

R/W perms
forbid Internet

use Internet use Internet
use Internet
declassify

R/W→Internet
– X

3 Private files sent over
network only via
email and if encrypted

protected by
R/W perms

forbid Internet
use Internet

use Internet
declassify

R/W→Internet
use ̂Internet X X

Figure 4: Three scenarios from our case study. Columns indicate the permissions assigned to each application,
and whether enforcement is via protection from privilege escalation (PE), or information flow prevention
(IF).

A particular challenge in implementing Sorbet was to capture operations that are not mediated by
ActivityManager, such as opening a socket or a file. Android enforces permission-based policies on such
operations by Linux-level checks based on the (Linux) group ID of the calling application; applications
are placed in the correct groups at installation time by the Package Manager. To mediate access to these
operations, we used TOMOYO Linux [20], a set of Linux kernel patches that replaces scattered, ad-hoc
access-control checks with centralized ones.2 We further extended TOMOYO Linux so that access attempts
for which policy was enforced at Linux level (e.g., to open a socket or a file) trigger a call to Sorbet’s
reference monitor. This also allows Sorbet to mediate security-relevant behaviors implemented in native
code that may be included in Android applications.

Case study To test Sorbet and illustrate its usefulness, we used it to implement several policies; some
that can be implemented (sometimes partially) by previously proposed mechanisms (e.g., [2, 7]), and some
that require Sorbet’s features. Our main case study involves four applications: a file manager for storing and
manipulating private files (e.g., a diary or list of account numbers); a text editor; an encryption application;
and an email application. The high-level policy we focus on is to prevent private files from being leaked on
the Internet, but to allow them to be manipulated by various applications at the user’s behest (e.g., by using
the private file manager to launch an editor). Private files are kept in a content provider implemented by
the file manager, and protected by separate permissions that allow read and write access. Applications can
access private files only when dynamically delegated the appropriate permissions by the file manager. We
next describe several specific scenarios (summarized in Fig. 4) that examine variants of this policy and show
how they could be implemented.

Scenario 1. We start from a base case in which private files must not be sent over the network (Fig. 4,
Scenario 1). In Android, the only way to prevent one of these applications from leaking files to the network
is to avoid granting any of the applications the Internet permission (Scenario 1a). In Sorbet, this policy can
be enforced by either the mechanism that prevents privilege escalation or the one that prevents undesired
information flows. In the first case, all other applications can be granted the Internet permission, but will no
longer be able to use it if the file manager, which does not have this permission, is on the call stack (Scenario
1b). In the second case, the file manager declares the Internet permission as forbidden, with the same effect
(Scenario 1c).

Scenario 2. We now extend the desired policy to allow only the email client to send a private file (an
activity that the user explicitly initiates), while other applications can use the Internet for other purposes.
This cannot be implemented in stock Android, but can still be done with either of Sorbet’s protection
mechanisms. For enforcement via the privilege-escalation mechanism, the email app must declare and be
granted the privileged version of the Internet permission.

2TOMOYO Linux has similarly been used by other researchers [2].

14

To enforce the same policy via Sorbet’s information-flow mechanism, the file manager would declare the
Internet permission as forbidden (as in Scenario 1), and the email would declare the permission to declassify
from R/W to Internet.

Scenario 3. Finally, we extend the policy from Scenario 2 to allow emailing private files only if they are
encrypted. Enforcing this without limiting reasonable uses of the email app requires both the information-
flow and privilege-escalation mechanisms. As in Scenario 2a, the email app is given the privileged Internet
permission, so that it can send email even if indirectly invoked by the file manager, which does not have
the Internet permission. In addition, the file manager declares the Internet permission forbidden, and the
encryption app is allowed to declassify. Now, the only path to emailing private files is via the encryption
app, which is trusted to invoke the email app only with encrypted data.

The last scenario shows that Sorbet allows straightforward specification of useful policies that go sig-
nificantly beyond what Android offers. Our case study used minimally modified off-the-shelf applications:
Open Manager v2.1.8, Qute Text Editor v0.1, Android Privacy Guard v1.0.9, Email v2.3.4. We modified
their manifest files, added sending functionality to some, and added a private content provider to Open
Manager. The impact of Sorbet on performance was sufficiently small to be unobservable by the user.3

6 Related Work

Researchers have analyzed the security of Android’s permission system [5, 10], developed analysis tools for
Android applications [11], and proposed new protection mechanisms (e.g., [19, 21]). Many works studied the
attack surface against Android (e.g., [18]), including attacks using covert and overt channels [23], DoS [1]
and web attacks [16], and unauthorized application repackaging [26].

Several works have pointed out flaws of the current Android permission system. One weakness is the
lack of global properties: Android’s permission system does not prevent privilege escalation or information
leakage. Davi et al. [6] and Felt et al. [12] have studied privilege-escalation attacks in detail. Bugiel et
al. developed a system that monitors interactions between applications at runtime and has the capacity to
mitigate a wide range of privilege escalation attacks [2]. Our enforcement mechanism has many similarities to
theirs. However, we focus on allowing developers to specify policies on a per-application basis, and emphasize
formal analysis of mechanisms. Dietz et al. proposed a framework for provenance tracking to mitigate the
confused deputy problem [7]. Our goals are similar, though Sorbet’s mechanism differs in several ways:
we do not track full provenance information, but instead focus on flexible policy specification based on
permissions, and we rely on the Android runtime for bookkeeping, rather than using digital signatures.
Another proposal for mitigating unintended application collusion is through domain isolation. Bugiel et
al. assigned trust levels to applications, allowing applications to communicate only if they are at the same
level [3]. They focus on defining policy for a set of applications that consist a trust level, whereas we let
applications define policy individually.

Several works have identified the problem of privacy leaks in Android [8, 23, 4, 9]. We provide a formal
infrastructure which allows these and other flaws to be seen as violations of desired security properties.
Projects such as TaintDroid [8] and AppFence [13] aim to automatically detect and prevent dangerous
private information leaks in Android. Our work is in several ways complementary to these. TaintDroid and
AppFence operate at a much finer granularity, tracking tainting at the level of variables, and enforce fixed
policies. In contrast, our enforcement is at the component level, and allows developers to specify policies,
including, e.g., declassification, which is key to enabling applications that have legitimate reason to send
tainted data to operate. We also formally prove that our enforcement mechanism soundly enforces desired
high-level security properties.

Formal analysis of Android-related security issues has received less attention. Shin et al. [24] developed
a formal model in order to verify functional correctness properties of Android, which revealed a flaw in the
naming scheme for permissions and a possible attack [25]. In contrast, our work develops a more abstract
model suitable for reasoning about extensions to Android’s permission system.

3We ran microbenchmarks, but, as common in this setting, the small changes—and sometimes improvements—in latency
were dwarfed by the variances between runs.

15

7 Conclusion

In addition to developing a framework for formally analyzing Android-style permission systems, this paper
shows that it is possible to enhance Android’s permission system to support rich policies while maintaining
convenient, application-centric policy specification. We have proved the design of our enforcement system
satisfies a set of security properties, showed its feasibility by implementing and running it on a Nexus S phone,
and demonstrated its usefulness through a case study. In developing our system we discover that Android’s
inability to provide strong isolation between components constrains the expressiveness of our system and
complicates its implementation. Our system successfully provides both application- and component-level
protections, but component-level protection would be enhanced by stronger underlying abstractions.

Acknowledgments

This research was supported in part by NSF grants 0917047 and 1018211; by CyLab at Carnegie Mellon
under grants DAAD19-02-1-0389 and W911NF-09-1-0273 from the Army Research Office; and by a gift from
KDDI R&D Laboratories Inc.

References

[1] M. M. A. Armando, A. Merlo and L. Verderame. Would you mind forking this process? A denial of
service attack on Android (and some countermeasures). In Proc. 27th IFIP International Information
Security and Privacy Conference (SEC 2012), 2012.

[2] S. Bugiel, L. Davi, A. Dmitrienko, T. Fischer, A.-R. Sadeghi, and B. Shastry. Towards taming privilege-
escalation attacks on Android. In Proc. NDSS, 2012.

[3] S. Bugiel, L. Davi, A. Dmitrienko, S. Heuser, A.-R. Sadeghi, and B. Shastry. Practical and lightweight
domain isolation on Android. In Proc. 1st ACM Workshop on Security and Privacy in Mobile Devices
(SPSM), 2011.

[4] A. Chaudhuri. Language-based security on Android. In PLAS Workshop, 2009.

[5] E. Chin, A. P. Felt, K. Greenwood, and D. Wagner. Analyzing inter-application communication in
Android. In MobiSys, 2011.

[6] L. Davi, A. Dmitrienko, A.-R. Sadeghi, and M. Winandy. Privilege escalation attacks on Android. In
Proc. ISC, volume 6531 of Lecture Notes in Computer Science, 2010.

[7] M. Dietz, S. Shekhar, Y. Pisetsky, A. Shu, and D. S. Wallach. Quire: Lightweight provenance for smart
phone operating systems. In Proc. USENIX Security Symposium, 2011.

[8] W. Enck, P. Gilbert, B. gon Chun, L. P. Cox, J. Jung, P. McDaniel, and A. N. Sheth. TaintDroid: An
information-flow tracking system for realtime privacy monitoring on smartphones. In Proc. USENIX
OSDI, 2010.

[9] W. Enck, D. Octeau, P. McDaniel, and S. Chaudhuri. A study of Android application security. In Proc.
USENIX Security Symposium, 2011.

[10] W. Enck, M. Ongtang, and P. D. McDaniel. On lightweight mobile phone application certification. In
Proc. CCS, 2009.

[11] A. P. Felt, E. Chin, S. Hanna, D. Song, and D. Wagner. Android permissions demystified. In Proc.
CCS, 2011.

[12] A. P. Felt, H. Wang, A. Moshchuk, S. Hanna, and E. Chin. Permission re-delegation: Attacks and
defenses. In Proc. USENIX Security Symposium, 2011.

16

[13] P. Hornyack, S. Han, J. Jung, S. Schechter, and D. Wetherall. These aren’t the droids you’re looking
for: Retrofitting Android to protect data from imperious applications. In Proc. CCS, 2011.

[14] A. Lineberry, D. L. Richardson, and T. Wyatt. These aren’t the permissions
you’re looking for. http://www.defcon.org/images/defcon-18/dc-18-presentations/

Lineberry/DEFCON-18-Lineberry-Not-The-Permissions-You-Are-Looking-For.pdf, 2010. [accessed
10-Apr-2012].

[15] J. Loftus. DefCon dings reveal Google product security risks. http://gizmodo.com/5828478/

defcon-dings-reveal-google-product-security-risks, 2011. [accessed 10-Apr-2012].

[16] T. Luo, H. Hao, W. Du, Y. Wang, and H. Yin. Attacks on WebView in the Android system. In Proc.
ACSAC ’11, 2011.

[17] C. Marforio, A. Francillon, and S. Čapkun. Application collusion attack on the permission-based security
model and its implications for modern smartphone systems. Technical Report 724, ETH Zurich, April
2011.

[18] A. Mylonas, S. Dritsas, B. Tsoumas, and D. Gritzalis. Smartphone security evaluation - the malware
attack case . In SECRYPT’11, 2011.

[19] M. Nauman, S. Khan, and X. Zhang. Apex: extending Android permission model and enforcement with
user-defined runtime constraints. In Proc. ASIACCS, 2010.

[20] NTT Data Corporation. TOMOYO Linux. http://tomoyo.sourceforge.jp/, 2012. [accessed 10-Apr-
2012].

[21] M. Ongtang, S. E. McLaughlin, W. Enck, and P. D. McDaniel. Semantically rich application-centric
security in Android. In Annual Computer Security Applications Conference, 2009.

[22] P. Passeri. One year of Android malware (full list). https://paulsparrows.wordpress.com/2011/08/11/

one-year-of-android-malware-full-list/, 2011. [accessed 10-Apr-2012].

[23] R. Schlegel, K. Zhang, X. Zhou, M. Intwala, A. Kapadia, and X. Wang. Soundcomber: A stealthy and
context-aware sound trojan for smartphones. In Proc. NDSS, 2011.

[24] W. Shin, S. Kiyomoto, K. Fukushima, and T. Tanaka. A formal model to analyze the permission
authorization and enforcement in the Android framework. In SocialCom/PASSAT, 2010.

[25] W. Shin, S. Kwak, S. Kiyomoto, K. Fukushima, and T. Tanaka. A small but non-negligible flaw in the
Android permission scheme. IEEE Workshop on Policies for Distributed Systems and Networks, 2010.

[26] W. Zhou, Y. Zhou, X. Jiang, and P. Ning. Detecting repackaged smartphone applications in third-party
Android marketplaces. In Proc. CODASPY ’12, 2012.

Appendix

A Flaws Discovered in Android

To the best of our knowledge only Flaw 4 had previously been reported.

Flaws related to delegation and revocation

Flaw 1: A component that has gained temporary permission can redelegate the permanent version of the
permission to another application, or itself.

For example, a JPEG viewer given temporary permission to read an email attachment is able to grant
itself permanent permission to read the attachment.

17

Flaw 2: The revocation function revokeURIPermission revokes a specific URI permission from all components
that were dynamically granted this permission. It can be called by components that own the permission or
were granted the permission at install time. This may lead to confusion.

Consider the scenario where the Contacts application delegates a URI permission to the email client in
order to send a contact through email. Before the email client completes this request, another application
that has static permission (permission.READ CONTACTS) to read the Contacts application’s content provider
can revoke the permission from the email client. This is an unexpected behavior for both the Contacts
application and the email application and can cause the email application to crash.

Flaw 3: If a component protected with permission P is initiated by the Resolver activity then its caller is
not constrained to have permission P .

The Resolver is a system activity that presents the user with a list of applications that can complete an
action. For example, if the SEND action can be performed by multiple applications—like email, messaging
and social network applications—the Resolver shows all of them to the user and the user chooses which one
to use. However, if any of these activities was protected by permission P , and a call that will cause that
activity to start is intercepted by the Resolver, the caller is not constrained to have P .

We speculate that this behavior is allowed because the user’s action of selecting the target for the call
implies the user’s consent to the call even if the caller does not have the required permission. In this situation
the user is being asked, without this being made explicit, to make a policy decision that may conflict with
his install-time decision to allow only specific applications access to a protected component. This behavior
of the Resolver is not documented, and may lead to a vulnerability if the user is not careful enough.

Flaws due to implementation error Along with the high-level correctness properties of §3.1, the imple-
mentation should obey several low-level correctness properties. The abstract model has helped us to identify
these properties, and prompted us to examine the Android implementation and discover several flaws.

The first correctness property concerns the naming scheme for permissions: if permissions P and P ′ are
deemed the same by the implementation, then they must be the same permission. In Android, permissions
are represented as strings, and any two permissions with the same name string are treated as equivalent,
even if they belong to unrelated applications. We will show vulnerabilities partially caused by this later.

The second correctness property requires system state to be properly updated when components exit or
are uninstalled. More concretely, when an application declaring a permission P is uninstalled, P should be
revoked from other applications that use P . Similarly, when an application containing a content provider
is uninstalled, any permissions for accessing this content provider should be revoked. Android does not
implement these clean-up functions properly. Combined with the inadequate identification of permissions,
this results in the following vulnerabilities.

Flaw 4: Permissions declared by uninstalled applications are not revoked.

This leads to a potential attack previously identified by Shin et al. [25]. Suppose that a user installs a
malicious application A that declares the permission P , and a malicious application B that uses it. After-
wards, the user uninstalls A and installs an innocent application that declares a permission with the same
name. Now, the malicious application B can access the innocent application, as it has already been granted
the permission. This scenario is particularly problematic because an attacker can easily target well-known
applications.

This flaw that enabled the attack was claimed to have been addressed [25], but we were still able to
reproduce it in Android 2.3.7.

Flaw 5: When an application A containing a content provider is uninstalled, any dynamically granted URI
permissions for accessing this content provider are not revoked.

If the application A is reinstalled, it can be accessed by the applications that were previously granted
these permissions. Additionally, URI permissions may refer to rows inside database tables, which they do
by row index. Even if application A is willing to share the same data with the same applications after being
reinstalled, old permissions that include row indices may now point to non-existent rows or rows that hold
different data. This can cause confusion on the part of the permission holder, and can lead to an unintended
information leak by the content provider.

18

Flaw 6: When an application that holds a URI permission is uninstalled, the permission is not revoked; if
the application is reinstalled it still holds the URI permission. To decide whether a new application is the
same as a previously uninstalled one, Android relies on the application’s self-declared package name.

These two design decisions can be leveraged by an attacker to perform the following attack. Suppose
that an application A grants permission to an innocent application B, which is then uninstalled. A malicious
application C is then installed, but has the same (self-declared) package name as B. When it is installed, C
gains all URI permissions that were granted to B.

19

